The Logistics of Scientific Growth in the 21st Century

ResearchBlogging.org

Over the last few months, I’ve noticed a growing number of reports about declining opportunities and increasing pressure for early stage academic researchers (Ph.D. students, post-docs and junior faculty). For example, the Washington Post published an article in early July about trends in the U.S. scientific job market entitled “U.S. pushes for more scientists, but the jobs aren’t there.” This post generated over 3,500 comments on the WaPo website alone and was highly discussed in the twittersphere. In mid July, Inside Higher Ed reported that an ongoing study revealed a recent, precipitous drop in the interest of STEM (Science/Technology/Engineering/Mathematics) Ph.D. students wishing to pursue an academic tenure-track career. These results confirmed those published in PLoS ONE in May that showed the interest to pursue an academic career of STEM students surveyed in 2010 showed evidence of a decline during the course of Ph.D. studies:

Figure 1. Percent of STEM Ph.D. judging a career to be “extremely attractive”. Taken from Saurman & Roach (2012).

Even for those lucky enough to get an academic appointment, the bad news seems to be that it is getting harder to establish a research program.  For example, the average age for a researcher to get their first NIH grant (a virtual requirement for tenure for many biologists in the US) is now 42 years old. National Public Radio quips “50 is the new 30, if you’re a promising scientist.”

I’ve found these reports very troubling since, after over nearly fifteen years of slogging it out since my undergrad to achieve the UK equivalent of a “tenured” academic position, I am acutely aware of the how hard the tenure track is for junior scientists at this stage in history. On a regular basis I see how the current system negatively affects the lives of talented students, post-docs and early-stage faculty. I have for some time wanted to write about my point of view on this issue since I see these trends as indicators of bigger changes in the growth of science than individuals may be aware of.  I’ve finally been inspired to do so by a recent piece by Euan Ritchie and Joern Fischer published in The Conversation entitled “Cracks in the ivory tower: is academia’s culture sustainable?“, which I think hits the nail on head about the primary source of the current problems in academics: the deeply flawed philosophy that “more is always better”.

My view is that the declining opportunities and increasing malaise among early-stage academics is a by-product of the fact that the era of exponential growth in academic research is over.  That’s nonsense, you say, the problems we are experiencing now are because of the current global economic downturn. What’s happening now is a temporary blip, things will return to happier days when we get back to “normal” economic growth and governments increase investment in research. Nonsense, I say. This has nothing to do with the current economic climate and instead has more to do with long-term trends in the growth of scientific activity over the last three centuries.

My views are almost entirely derived from a book written by Derek de Solla Price entitled Little Science, Big Science. Price was a scientist-cum-historian who published this slim tome in 1963 based a series of lectures at Brookhaven National Lab in 1962. It was a very influential book in the 1960s and 1970s, since it introduced citation analysis to a wide audience. Along with Eugene Garfield of ISI/Impact Factor fame (or infamy, depending on your point of view), Price is credited as being one of the founding fathers of Scientometrics. Sadly, this important book is now out of print, the Wikipedia page on this book is a stub with no information, and Google books has not scanned it into their electronic library, showing just how far the ideas in this book are out of the current consciousness. I am not the first to lament that Price’s writings have been ignored in recent years.

In a few short chapters, Price covers large-scale trends in the growth of science and the scientific literature from its origins in the 17th century, which I urge readers to explore for themselves. I will focus here only on one of his key points that relates to the matter at hand — the pinch we are currently feeling in science. Price shows that as scientific disciplines matured in the 20th century, they achieved a characteristic exponential growth rate, which appears linear on a logarithmic scale. This can be seen terms of both the output of scientific papers (Figure 2) or scientists themselves (Figure 3).

Figure 2. Taken from de Solla Price 1963.

Figure 4. A model of logistic growth for Science in the late 20th and early 21st century (taken from de Solla Price 1963).

Figure 3. Taken from de Solla Price 1963.

Price showed that there was a roughly constant doubling time for different forms of scientific output (number of journals, number of papers, number of scientists, etc.) of about 10-15 years. That is, the amount of scientific output at a given point in history is twice as large as it was 10-15 years before. This incessant growth is why we all feel like it is so hard to keep up on the literature (and incidentally why I believe that text mining is now an essential tool). And these observations led Price to make the famous claim that “Eighty to 90 per cent of all the scientists who have ever lived are alive now”.

Crucially, Price pointed out that the doubling time of the number of scientists is much shorter than the doubling time of the overall human population (~50 years). Thus, the proportion of scientists relative to the total human population has been increasing for decades, if not centuries. Price makes the startling but obvious outcomes of this observation very clear: either everyone on earth will be a scientist one day, or the growth rate of science must decrease from its previous long-term trends. He then goes on to argue that the most likely outcome is the latter, and that scientific growth rates will change from exponential to logistic growth and reach saturation sometime within 100 years from the publication of his book in 1963 (Figure 4):

Figure 4. A model of logistic growth for Science (taken from de Solla Price 1963).

So maybe the bad news circulating in labs, coffee rooms and over the internet is not a short-term trend based on the current economic downturn, but instead reflects the product of a long-term trend in the history of science?  Perhaps the crunch that we are currently experiencing in academic research now is the byproduct of the fact that we are in Price’s transition from exponential to logistic growth in science? If so, the pressures we are experiencing now may simply reflect that the current rate of production of scientists is no longer matched to the long-term demand for scientists in society.

Whether or not this model of growth in science is true is clearly debatable (please do so below!). But if we are in the midst of making the transition from exponential to logistic growth in science, then there are a number of important implications that I feel scientists at all stages of their careers should be aware of:

1) For PhD students and post-docs: you have every right to be feeling like the opportunities in science may not be there for you as they were for your supervisors and professors. This message sucks, I know, but one important take-home message from this is that it may not have anything to do with your abilities; it may just have to do with when you came along in history. I am not saying that there will be no opportunities in the future, just fewer as a proportion of the total number of jobs in society relative to current levels. I’d argue that this is a cautiously optimistic view, since anticipating the long-term trends will help you develop more realistic and strategic approaches to making career choices.

2) For early-stage academics: your career trajectory is going to be more limited that you anticipated going into this gig. Sorry mate, but your lab is probably not going to be as big as you might think it should be, you will probably get fewer grants, and you will have more competition for resources than you witnessed in your PhD or post-doc supervisor’s lab. Get used it. If you think you have it hard, see point 1). You are lucky to have a job in science. Also bear in mind that the people judging your career progression may hold expectations that are no longer relevant, and as a result you may have more conflict with senior members of staff during the earlier phases of your career than you expect. Most importantly, if you find that this new reality is true for you, then do your best to adjust your expectations for PhD  students and post-docs as well.

3) For established academics: you came up during the halcyon days of growth in science, so bear in mind that you had it easy relative to those trying to make it today. So when you set your expectations for your students or junior colleagues in terms of performance, recruitment or tenure, be sure to take on board that they have it much harder now than you did at the corresponding point in your career [see points 1) and 2)]. A corollary of this point is that anyone actually succeeding in science now and in the future is (on average) probably better trained and works harder than you (at the corresponding point in your career), so on the whole you are probably dealing with someone who is more qualified for their job than you would be.  So don’t judge your junior colleagues with out-of-date views (that you might not be able to achieve yourself in the current climate) and promote values from a bygone era of incessant growth. Instead, adjust your views of success for the 21st century and seek to promote a sustainable model of scientific career development that will fuel innovation for the next hundred years.

References

de Solla Price D (1963) Little Science. Big Science. New York: Columbia University Press.

Kealey T (2000). More is less. Economists and governments lag decades behind Derek Price’s thinking Nature, 405 (6784) PMID: 10830939

Sauermann H, & Roach M (2012). Science PhD career preferences: levels, changes, and advisor encouragement. PloS one, 7 (5) PMID: 22567149

Related Posts:

Advertisements

Top N Reasons To Do A Ph.D. or Post-Doc in Bioinformatics/Computational Biology

For the last few years I’ve given a talk to incoming Ph.D. students in Molecular Biology on why they should consider doing Computational Biology research. I’m fairly passionate about making this pitch, since I strongly believe all 21st century Biologists should have a greater (or lesser) degree of computational training, and that the best time to gain that training is during a Ph.D. or a Post-Doc.

I’ve decided to post an expanded version of the reasons I give for why Biology trainees should gain computational skills in hopes of encouraging a wider audience to consider a research path in Computational Biology. For simplicity, I define the field of Computational Biology to include Bioinformatics as well, although there are important distinctions between these two disciplines. Also, I note that this list is geared towards convincing students with a background in Molecular Biology to consider moving into Computational Biology, but core aspects and variants of the arguments here should apply to people with backgrounds in other disciplines (e.g. Ecology, Neuroscience) as well. Here we go…

0. Computing is the key skill set for 21st century biology: As time progresses, Biology is becoming a more quantitative science. Over the last three centuries, biology has transformed from an observational science into an experimental science into a data science. As the low-hanging fruit gets picked, fundamental discoveries are getting harder to make using observation and experiment alone. In the future, new discoveries will require leveraging big datasets and using advanced analytical methods. Big data and complex models require computational skills. Full stop. There is no way to escape this reality.

But if you don’t take my word for it, listen to what Nobel-prize winning pioneer of molecular biology Walter Gilbert, who made this same argument about the future of biology over 20 years ago:

To use this flood of [sequence] knowledge, which will pour across the computer networks of the world, biologists not only must become computer literate, but also change their approach to the problem of understanding life.

Or listen to Nobel-prize winning pioneer of molecular biology Sydney Brenner, who has been banging on about this issue for years:

I spent many hours persuading people that computing was not only going to be the essential tool for biological research but would also provide models for analyzing complexity…The development of sequencing techniques and their widespread application has generated enormous databases of information, and the need for computers is no longer questioned

1. Computational skills are highly transferable: Let’s face it, not everyone doing a Ph.D. or Post-Doc. in Biology is going to go on to a career in academic research. The Washington Post recently reported that “only 14 percent of those with a Ph.D. in biology and the life sciences now land a coveted academic position within five years“. So if there is high probability that your Ph.D. or Post-Doc training will need to be used outside of academic research, why not acquire the most broadly applicable skill set that you can? Experimental skills only transfer to laboratory jobs in the biosciences or medical job market. Computational skills transfer across this sector, plus a much wider market outside of the (bio)science. Increasing your computational chops won’t just give you a better chance at landing a job. It will have added benefits in your own life as well, since you will have a deeper appreciation for how computers work and more mastery of when you interact with computers in your daily life.

2. Computing will help improve your core scientific skills: Biology is inherently a messy subject. While some Biologists are rigorously trained in how to cope with this messiness through good experimental design and statistical analysis (here’s looking at you my Ecologist sisters and brothers), the sad truth is that many (most?) Biologists have bad habits when it comes to data collection and analysis.  Computing forces you to confront and tame the very human tendency to do science in ad hoc ways and therefore it naturally develops core scientific skills such as: logically planning experiments, collecting data consistently, developing reproducible methodology, and analysing your data with proper statistical methodology. So even if you can’t be convinced to abandon the bench or field forever, computational training will develop scientific best-practice that crosses-over and enhances your experimental skills set.

3. You should use you Ph.D./Post-Doc to develop new skills: Most Biologists come into their Ph.D. with some experimental training from high school and undergraduate studies. OK, so maybe this training isn’t cutting edge and you haven’t done advanced research to really hone your experimental skills, but nevertheless you do have some amount of training under your belt. In contrast, the vast majority of Biology Ph.D. students have no training in scientific computing skills beyond using Excel or a GUI-based statistics package. So use your Ph.D. or Post-Doc. time to for what it should be — training in something new, not just further developing a skill set that you already have.

My view is that the best time to train in Computational Biology is during a Ph.D., and the last chance to do this is likely to be as a Post-Doc. This is because during your Ph.D. you have time, secure funding and a departmental structure to protect you that you will never have again in your career. Gaining computational skills as a Post-Doc is also a great option, but shorter contracts, greater PI dependency, and higher expectations to publish mean that you typically don’t have as much time to re-train as you would during a Ph.D. Good luck finding the time to re-tool as a PI.

4. You will develop a more unique skill set in Biology: As noted above, the vast majority of Biologists have experimental training, but very few have advanced Computational training. While this is (thankfully!) changing, you will still be at a competitive advantage for at least a decade or more in terms of getting results in post-genomic Biology if you can code. And because you will be able to get results that many others cannot, plus the fact that you will have skills that set you apart from the herd, you will be more competitive on the job market. Straight up.

5. You will publish more papers: While it may not always feel like it, a Ph.D. or  Post-Doc goes by quickly. Therefore, you don’t have a lot of time to waste time with experiments that fail, if you want to stay in the game. Don’t get me wrong, Computational Biology will provide you more than your fair share of failed experiments, but crucially they will fail in hours/days instead of weeks/months, and therefore allow you to move on to something that works more quickly. As a result, you are very likely to publish more papers per unit time in Computational Biology. Whether you believe the old chestnut that experimental papers are somehow “harder” and therefore have more worth (I don’t), it is clear that publication remains the hard currency of science. Moreover, the adage that search committees “know how to count even if they can’t read” is still as true as ever. More seriously, what employers and funding agencies want to see is junior researchers who have good ideas and can take them to completion. Publication is the proof that you can finish projects. Computational Biology will allow you to demonstrate that you are a finisher, and that you have what it takes to succeed in science, a little bit faster than the next guy or gal.

6. You will have more flexibility in your research: I would say one of the greatest thing about being a Computational Biologist is that you are not as constrained in your research as you are when you do Experimental Biology. Sure, you can only work on projects that are amenable to computational analysis, but this scope is vast — from Computational Neuroscience to Theoretical Ecology and anything and everything in between. You can also move from flexibly from topic to topic more easily than you can if your skill set is linked to specific experimental techniques. This flexibility in scope allows you to satisfy your intellectual curiosity or chase the latest trend as you wish.  Most importantly for trainees, the flexibility (and low-cost, see below) afforded by Computational Biology research allows you to make the case to your PI to develop your own research programme earlier in your career. This is crucial since the more experience you have designing independent projects early in your career, the more likely you will be to succeed if/when you make it to the big time.

7. You will have more flexibility in working practices: ‘Nuff said:

Seriously though, Computational Biology has many pluses when it come to balancing work and life, but still maintaining a high level of productivity. Unlike being chained to the bench, you can do Computational Biology from pretty much anywhere, and telecommuting/working from home are standard practices in Computational Biology. Over the longer term, this flexibility in work practice helps you to accommodate career-breaks, manage the tough times life will throw at you, and make big life decisions like starting a family easier, since you can integrate coding and submitting jobs to the cluster into your life much better than you can integrate racing back to the lab to flip stocks or harvest cells. Let me say it loud and clear right here: if you want to have a career in academic Biological research and also have a family, choosing to do a Ph.D or Post-Doc in Computational Biology will be more likely to get you to this goal than if you are stuck in the lab. This is not just true for women, as I and others can attest to:

8. Computational research is cost-effective: With the wealth of publicly available data now available, Computational Biology research is cheaper than most experimental work that requires a large consumables budget. This is important for a number of reasons. Primarily, work in Computational Biology is less dependent on grant funding, and therefore you don’t have to be a slave to trends or waste inordinate time chasing grant funding — you can actually just get on with the job of doing the science you want to do. This is especially important in tough economic times like the present moment. As mentioned above, the reduced cost of Computational Biology research also allows trainees to design their own research at an earlier career stage, since you will not be as reliant on a PI to authorize expenditure for your project. Cost-efficiency is also very important when you are starting your group and for maintaining continuity of productivity when riding out troughs in funding or group size. Finally, the cost-efficiency of Computational Biology allows researchers in developing scientific economies to be on equal parity with researchers in rich countries. In my opinion, trainees from BRICS nations and other developing economies (sorry to use this somewhat judgemental term) should really consider choosing Computational Biology as a way to get to the top of the class globally without being limited by the need for big budgets.

9. A successful scientist ends up in an office: This is the kicker. If you succeed and get that “coveted” PI position, you will ultimately end up stuck in an office. True, some brave souls still find time to make it into the lab to do experiments, but they are a rare breed. The truth is that the native habitat for an academic researchers is sitting in their office in front of their computer. You can’t do a lick of wet lab or field work from the office, but you can still do Computational Biology research from behind a desk! As noted by Webb Miller, one of the most highly-cited bioinformaticians ever, continuing to do your own research is also one of the best ways to stay motivated about your work over the long haul of a career. Remember that the long-term goal is to be a “Principal Investigator”, not an “In Principle Investigator,” so if you’ve really wanted to do research since you were young, then ask yourself: why train in skills you will never ultimately use for the majority of your career, while somebody else in your lab gets to have fun making all the discoveries?

[10. You will understand why lists should start with the number zero.]

A major reason I have for posting this list is to start more discussion about the benefits of doing research in Computational Biology. I have deliberately made this a top N (not a top 10 list) so that good ideas can be added to the above. I’ll update this post with good suggestions from the comments, and give full credit to the originator.