Simplifying Access to Paywalled Literature with Mobile Vouchers

Increasingly I read new scientific papers on a mobile device, often at home in the evening when I’m not on my university’s network. Most of the articles I read come from scientists on Twitter, Twitterbots or RSS feeds, which I try to read directly from my Twitter or RSS clients (Tweetbot and Feedly for iOS, respectively). Virtually every day, I hit paywalls trying to read non-open access papers from these sources, which aggravate me, waste my time, and require a variety of workarounds to (legally) access papers that differ depending on the publisher/journal.

For publishers that expose an obvious “Institutional login” option, I will typically try to log in using the UK Federation Shibboleth authentication system, which uses my university credentials. But Tweetbot and Feedly don’t store my Shibboleth user/pass, so for each article I either have to manually enter my user/pass, or open the page in Safari where my Shibboleth user/pass are stored. This app switch breaks my flow and leads to tab proliferation, neither of which are optimal. Some journals that use an institutional login temporarily store my details for around a week so I don’t have to do this every time I read a paper, but I still find myself entering the my details for the same journals over and over.

For journals that don’t have an institutional login option or hide this option from plain view, I tend to switch from Twitter/RSS to my IPad Settings in order to log in to my university VPN. The VPN login on my iPad similarly does not store my password, requiring me to type in my university password over and over. This wouldn’t be such a big deal, but my university’s requirement of including one uppercase Egyptian hieroglyph and one lowercase Celtic rune makes entering my password with the iOS keyboard a hassle.

In going through this frustrating routine yet again today trying to access an article in Genetics, I stumbled on a nice feature that I hadn’t seen before called “Mobile Vouchers” that allows me to avoid this rigmarole in the future. As explained on the Genetics Mobile Voucher FAQ:

A voucher is a code that will tie your mobile device to your institution’s subscriptions. This voucher will grant you access to protected content while not on your institution’s network. Each mobile device must be vouched for individually and vouchers are only valid for the publisher for which it is issued.

Obtaining a voucher is super easy. If you are not on your university network, you first need to be logged into your VPN to obtain a voucher. Once on your university network, just visit http://www.genetics.org/voucher/get, enter your name/email address and then submit. This will issue a voucher that you can use immediately to authenticate your device (it will also email you with this information). Voilà, no paywalls for Genetics on your iPad for the next six months or so. In addition to decreasing frustration and increasing flow for scientists, I can see this technology being really useful for PhD students, postdocs and visiting scientists to retain access to the literature for a few months after the end of their positions.

I was surprised I hadn’t seen this before, since it eliminates one of my chronic annoyances as a consumer of the digital scientific literature. Maybe others would disagree, but I would say that publishers haven’t done a very good job of advertising this very useful feature. Googling around, I didn’t find much on mobile vouchers other than a SlideShare presentation from Highwire press from 2011, which suggests the technology has been around for some time:

 

I also couldn’t find much information on which journals offer this service, but a few google searches led me to the following list of publishers/journals that offer mobile vouchers. It appears that most of these journals use HighWire press to serve their content, and that vouchers can operate at the publisher (e.g. Oxford University Press) or journal (e.g. Genetics, PNAS) scale. The OUP voucher is particularly useful since it covers Molecular Biology and Evolution and Bioinformatics, which (together with Genetics) are the journals I hit paywalls for most frequently. Since these vouchers do expire eventually, I thought it would be good to bookmark these links for future use and to highlight this very useful tech tip. Links to other publishers and any other information on mobile vouchers would be most welcome in the comments.

Oxford University Press
http://services.oxfordjournals.org/site/subscriptions/mobile-voucher-faq.xhtml

Royal Society
http://admincenter.royalsocietypublishing.org/cgi/voucher-use

Rockefeller Press
http://www.rupress.org/site/subscriptions/mobile-voucher-faq.xhtml

Lyell
http://www.lyellcollection.org/site/subscriptions/mobile-voucher-faq.xhtml

Sage
http://online.sagepub.com/site/subscriptions/mobile-voucher-faq.xhtml

BMJ
http://journals.bmj.com/site/subscriptions/mobile-voucher-faq.xhtml

AACR
http://www.aacrjournals.org/site/Access/mobile_vouchers.xhtml

Genetics
http://www.genetics.org/site/subscriptions/mobile-voucher-faq.xhtml

PNAS
http://www.pnas.org/site/subscriptions/mobile-voucher-faq.xhtml

JBC
http://www.jbc.org/site/subscriptions/mobile-voucher-faq.xhtml

Endocrine
http://www.eje-online.org/site/subscriptions/mobile-voucher-faq.xhtml

J. Neuroscience
http://www.jneurosci.org/site/subscriptions/mobile-voucher-faq.xhtml

GeoScienceWorld
http://www.geoscienceworld.org/site/subscriptions/mobile-voucher-faq.xhtml

Economic Geology
http://www.segweb.org/SEG/Publications/SEG/_Publications/Mobile_Vouchers.aspx

Multi-sample SNP calling circa 1994

Last November, when news of Fred Sanger‘s death was making its way around scientific circles, so too were many images of Sanger DNA sequencing reactions visualized as autoradiograms. These images brought back memories of a style of Sanger sequencing gel that I first saw in an undergraduate class on population genetics taught by Charles (“Chip”) Aquadro at Cornell University in the autumn of 1994, which left a deep impression on me. My personal photograph 51, if you will.

At the time, I was on course to be a high-school biology teacher, a plan that was scuppered by being introduced to the then-emerging field of molecular population genetics covered in Aquadro’s class. I distinctly remember Aquadro putting up a transparency on the overhead showing an image of a Sanger gel where each of the four bases were run in sets that included each individual in the sample, allowing single nucleotide polymorphisms (“SNPs”) to be easily identified by eye. This image made an extremely strong impression on me, transforming the abstract A and a alleles typically discussed in population genetics into concrete molecular entities. Together with the rest of the material in Aquadro’s class, this image convinced me to pursue a career in evolutionary genetics.

I emailed Aquadro around that time last year to see if he had such an image digitized, and he said he’d try to dig one out. A few weeks ago he sent me the following image, which shows the state-of-the-art in multi-sample SNP calling circa 1994:

SangerSequencingGel-RosyDmel-Aquadro

Multi-sample Sanger sequencing gel of a fragment of the Drosophila melanogaster rosy (Xdh) gene (credit: Charles Aquadro). The first four lanes represent the four bases of the “reference” sequence, followed by four sets of lanes (one for each base) containing sequencing reactions for each individual in the sample. Notice how when a band is missing from a set for one individual, it is present in a different set for that same individual. This format allowed the position and identity of variable sites in a sample to be identified quickly, without having to read off the complete sequence for each individual.

For those of us who now perform multi-sample SNP calling at the whole-genome scale using something like a Illumina->BWA->SAMtools pipeline, it is sometimes hard to comprehend how far things have progressed technologically in the last 20 years.

Perhaps equally dramatic are the changes in the larger social and scientific value placed on the use of sequence analysis and the identification of variation in natural populations. At that time, the Aquadro lab was referred to in a friendly, if somewhat disparaging, way as the “Sequence and Think Lab” by others in the department (because “all they do in that lab is sequence and think”). As the identification of natural molecular variation in humans quickly becomes the basis for personalized medicine, and as next-generation sequencing is incorporated into more basic molecular biological techniques, it is impressive to see how quickly the “sequence and think” model has moved from a peripheral to a central role in modern biology.