Accelerating Your Science with arXiv and Google Scholar

As part of my recent conversion to using arXiv, I’ve been struck by how posting preprints arXiv synergizes incredibly well with Google Scholar. I’ve tried to make some of these points on Twitter and elsewhere, but I thought I’d try to summarize here what I see as a very powerful approach to accelerating Open Science using arXiv and several features of the Google Scholar toolkit. Part of the motivation for writing this post is that I’ve tried to make this same pitch to several of my colleagues, and was hoping to be able to point them to a coherent version of this argument, which might be of use for others as well.

A couple of preliminaries. First, the main point of this post is not about trying to convince people to post preprints to arXiv. The benefits of preprinting on arXiv are manifold (early availability of results, allowing others to build on your work sooner, prepublication feedback on your manuscript, feedback from many eyes not just 2-3 reviewers, availability of manuscript in open access format, mechanism to establish scientific priority, opportunity to publicize your work in blogs/twitter, increased duration for citations) and have been ably summarized elsewhere. This post is specifically about how one can get the most out of preprinting on arXiv by using Google Scholar tools.

Secondly, it is important to make sure people are aware of two relatively recent developments in the Google Scholar toolkit beyond the basic Google Scholar search functionality — namely, Google Scholar Citations and Google Scholar Updates. Google Scholar Citations allows users to build a personal profile of their publications, which draws in citation data from the Google Scholar database, allowing you to “check who is citing your publications, graph citations over time, and compute several citation metrics”, which also will “appear in Google Scholar results when people search for your name.” While Google Scholar Citations has been around for a little over a year now, I often find that many Scientists are either not aware that it exists, or have not activated their profile yet, even though it is scarily easy to set up. Another more recent feature available for those with active Google Scholar Citations profiles is called Google Scholar Updates, a tool that can analyze “your articles (as identified in your Scholar profile), scan the entire web looking for new articles relevant to your research, and then show you the most relevant articles when you visit Scholar”. As others have commented, Google Scholar Updates provides a big step forward in sifting through the scientific literature, since it provides a tailored set of articles delivered to your browser based on your previous publication record.

With these preliminaries in mind, what I want to discuss now is how a Google Scholar plays so well with preprints on arXiv to accelerate science when done in the Open. By posting preprint to arXiv and activating your Google Scholar Citation profile, you immediately gain several advantages, including the following:

  1. arXiv preprints are rapidly indexed by Google Scholar (with 1-2 days in my experience) and thus can be discovered easily by others using a standard Google Scholar search.
  2. arXiv preprints are listed in your Google Scholar profile, so when people browse your profile for your most recent papers they will find arXiv preprints at the top of the list (e.g. see Graham Coop’s Google Scholar profile here).
  3. Citations to your arXiv preprints are automatically updated in your Google Scholar profile, allowing you to see who is citing your most recent work.
  4. References included in your arXiv preprints will be indexed by Google Scholar and linked to citations in other people’s Google Scholar profiles, allowing them to find your arXiv preprint via citations to their work.
  5. Inclusion of an arXiv preprint in your Google Scholar profile allows Google Scholar Updates to provide better recommendations for what you should read, which is particularly important when you are moving into a new area of research that you have not previously published on.
  6. [Update June 14, 2013] Once Google Scholar has indexed your preprint on arXiv it will automatically generate a set of Related Articles, which you can browse to identify previously published work related to your manuscript.  This is especially useful at the preprint stage, since you can incorporate related articles you may have missed before submission or during revision.

I probably have overlooked other possible benefits of the synergy between these two technologies, since they are only dawning on me as I become more familiar with these symbiotic scholarly tools myself. What’s abundantly clear to me at this stage though is that by embracing Open Science and using arXiv together with Google Scholar puts you at a fairly substantial competitive advantage in terms of your scholarship, in ways that are simply not possible using the classical approach to publishing in biology.

Suggesting Reviewers in the Era of arXiv and Twitter

Along with many others in the evolutionary genetics community, I’ve recently converted to using arXiv as a preprint server for new papers from my lab. In so doing, I’ve confronted an unexpected ethical question concerning pre-printing and the use of social media, which I was hoping to generate some discussion about as this practice becomes more common in the scientific community. The question concerns the suggestion of reviewers for a journal submission of a paper that has previously been submitted to arXiv and then subsequently discussed on social media platforms like Twitter. Specifically put, the question is: is it ethical to suggest reviewers for a journal submission based on tweets about your arXiv preprint?

To see how this ethical issue arises, I’ll first describe my current workflow for submitting to arXiv and publicizing it on Twitter. Then, I’ll propose an alternative that might be considered to be “gaming” the system, and discuss precedents in the pre-social media world that might inform the resolution of this issue.

My current workflow for submission to arXiv and announcement on twitter is as follows:

  1. submit manuscript to a journal with suggested reviewers based on personal judgement;
  2. deposit the same version of the manuscript that was submitted to journal in arXiv;
  3. wait until arXiv submission is live and then tweet links to the arXiv preprint.

From doing this a few times (as well as benefiting from additional Twitter exposure via Haldane’s Sieve), I’ve realized that there can often be fairly substantive feedback about an arXiv submission via twitter in the form of who (re)tweets links to it and what people are saying about the manuscript. It doesn’t take much thought to realize that this information could potentially be used to influence a journal submission in the form of which reviewers to suggest or oppose using an alternative workflow:

  1. submit manuscript to arXiv;
  2. wait until arXiv submission is live and then tweet about it;
  3. moniter and assimilate feedback from Twitter;
  4. submit manuscript to journal with suggested and opposed reviewers based on Twitter activity.

This second workflow incidentally also arises under the first workflow if your initial journal submission is rejected, since there would naturally be a time lag in which it would be difficult to fully ignore activity on Twitter about an arXiv submission.

Now, I want to be clear that I haven’t and don’t intend to use the second workflow (yet), since I have not fully decided if this an ethical approach to suggesting reviewers. Nevertheless, I lean towards the view that it is no more or less ethical than the current mechanisms of selecting suggested reviewers based on: (1) perceived allies/rivals with relevant expertise or (2) informal feedback on the work in question presented at meetings.

In the former case of using who you perceive to be for or against your work, you are relying on personal experience and subjective opinions about researchers in your field, both good and bad, to inform your choice of suggested or opposed reviewers. This is some sense no different qualitatively to using information on Twitter prior to journal submission, but is instead based on a closed network using past information, rather than an open network using information specific to the piece of work in question. The latter case of suggesting reviewers based on feedback from meeting presentations is perhaps more similar to the matter at hand, and I suspect would be considered by most scientists to be a perfectly valid mechanism to suggest or oppose reviewers for a journal submission.

Now, of course I recognize that suggested reviewers are just that, and editors can use or ignore these suggestions as they wish, so this issue may in fact be moot. However, based on my experience, suggested reviewers are indeed frequently used by editors (if not, why would they be there?). Thus resolving whether smoking out opinions on Twitter is considered “fair play” is probably something the scientific community should consider more thoroughly in the near future, and I’d be happy to hear what other folks think about this in the comments below.

On the Preservation of Published Bioinformatics Code on Github

A few months back I posted a quick analysis of trends in where bioinformaticians choose to host their source code. A clear trend emerging in the bioinformatics community is to use github as the primary repository of bioinformatics code in published papers.  While I am a big fan of github and I support its widespread adoption, in that post I noted my concerns about the ease with which an individual can delete a published repository. In contrast to SourceForge, where it is extremely difficult to delete a repository once files have been released and this can only be done by SourceForge itself, deleting a repository on github takes only a few seconds and can be done (accidentally or intentionally) by the user who created the repository.

Just to see how easy this is, I’ve copied the process for deleting a repository on github here:

  • Go to the repo’s admin page

  • Click “Delete this repository”

  • Read the warnings and enter the name of the repository you want to delete
  • Click “I understand the consequences, delete this repository

Given the increasing use of github in publications, I feel the issue of repository deletion on github needs to be discussed by scientists and publishers more in the context of the important issue of long-term maintenance of published code. The reason I see this as important is that most github repositories are published via individual user accounts, and thus only one person holds the keys to preservation of the published code. Furthermore, I suspect funders, editors, publishers and (most) PIs have no idea how easy it is under the current model to delete published code. Call me a bit paranoid, but I see it is my responsibility as a PI to ensure the long-term preservation of published code, since I’m the one who signs off of data/resource plans in grants/final reports. Better to be safe than sorry, right?

On this note, I was pleased to see a retweet in my stream this week (via C. Titus Brown) concerning news that the journal Computers & Geosciences has adopted an official policy for hosting published code on github:

The mechanism that Computers & Geosciences has adopted to ensure long-term preservation of code in their journal is very simple – for the editor to fork code submitted by a github user into a journal organization (note: a similar idea was also suggested independently by Andrew Perry in the comments to my previous post). As clearly stated in the github repository deletion mechanism “Deleting a private repo will delete all forks of the repo. Deleting a public repo will not.” Thus, once Computers & Geosciences has forked the code, risk to the author, journal and community of a single point of failure is substantially ameliorated, with very little overhead to authors or publishers.

So what about the many other journals that have no such digital preservation policy but currently publish papers with bioinformatics code in github? Well, as a stopgap measure until other journals get on board with similar policies (PLOS & BMC, please lead the way!), I’ve taken the initiative to create a github organization called BioinformaticsArchive to serve this function. Currently, I’ve forked code for all but one of the 64 publications with github URLs in their PubMed record. One of the scary/interesting things to observe from this endeavor is just how fragile the current situation is. Of the 63 repositories I’ve forked, about 50% (n=31) had not been previously forked by any other user on github and could have been easily deleted, with consequent loss to the scientific community.

I am aware (thanks to Marc Robinson Rechavi) there are many more published github repositories in the full-text of articles (including two from our lab), which I will endeavor to dig out and add to this archive asap. If anyone else would like to help out with the endeavor, or knows of published repositories that should included, send me an email or tweet and I’ll add them to the archive. Comments on how to improve on the current state of preservation of published bioinformatics code on github and what can be learned form Computers and Geosciences new model policy are most welcome!